Search results for "collagen type iv"
showing 10 items of 21 documents
Vitamin A deficiency disturbs collagen IV and laminin composition and decreases matrix metalloproteinase concentrations in rat lung. Partial reversib…
2011
Vitamin A is essential for lung development and pulmonary cell differentiation. Its deficiency leads to altered lung structure and function and to basement membrane architecture and composition disturbances. Previously, we showed that lack of retinoids thickens the alveolar basement membrane and increases collagen IV, which are reversed by retinoic acid, the main biologically active vitamin A form. This study analyzed how vitamin A deficiency affects the subunit composition of collagen IV and laminin of lung basement membranes and pulmonary matrix metalloproteinase content, plus the recovering effect of all-trans-retinoic acid. Male weanling pups were fed a retinol-adequate/-deficient diet …
Pharmacological Suppression of CNS Scarring by Deferoxamine Reduces Lesion Volume and Increases Regeneration in an In Vitro Model for Astroglial-Fibr…
2015
Lesion-induced scarring is a major impediment for regeneration of injured axons in the central nervous system (CNS). The collagen-rich glial-fibrous scar contains numerous axon growth inhibitory factors forming a regeneration-barrier for axons. We demonstrated previously that the combination of the iron chelator 2,2'-bipyridine-5,5'-decarboxylic acid (BPY-DCA) and 8-Br-cyclic AMP (cAMP) inhibits scar formation and collagen deposition, leading to enhanced axon regeneration and partial functional recovery after spinal cord injury. While BPY-DCA is not a clinical drug, the clinically approved iron chelator deferoxamine mesylate (DFO) may be a suitable alternative for anti-scarring treatment (A…
An arthritogenic alphavirus uses the α1β1 integrin collagen receptor
2005
Ross River (RR) virus is an alphavirus endemic to Australia and New Guinea and is the aetiological agent of epidemic polyarthritis or RR virus disease. Here we provide evidence that RR virus uses the collagen-binding alpha1beta1 integrin as a cellular receptor. Infection could be inhibited by collagen IV and antibodies specific for the beta1 and alpha1 integrin proteins, and fibroblasts from alpha1-integrin-/- mice were less efficiently infected than wild-type fibroblasts. Soluble alpha1beta1 integrin bound immobilized RR virus, and peptides representing the alpha1beta1 integrin binding-site on collagen IV inhibited virus binding to cells. We speculate that two highly conserved regions with…
Goodpasture antigen-binding protein, the kinase that phosphorylates the goodpasture antigen, is an alternatively spliced variant implicated in autoim…
2000
The non-collagenous C-terminal domain of the alpha(3) chain of collagen IV is the autoantigen in Goodpasture disease, an autoimmune disorder described only in humans. Specific N-terminal phosphorylation is a biological feature unique to the human domain when compared with other homologous domains lacking immunopathogenic potential. We have recently cloned from a HeLa-derived cDNA library a novel serine/threonine kinase (Goodpasture antigen-binding protein (GPBP)) that phosphorylates the N-terminal region of the human domain (Raya, A. Revert, F, Navarro, S. and Saus J. (1999) J. Biol. Chem. 274, 12642-12649). We show here that the pre-mRNA of GPBP is alternatively spliced in human tissues an…
Precise mapping of the Goodpasture epitope(s) using phage display, site-directed mutagenesis, and surface plasmon resonance.
2013
Goodpasture disease is an autoimmune disorder mediated by circulating autoantibodies against the noncollagenous-1 (NC1) domain of the alpha 3 chain of type IV collagen (alpha 3(IV)NC1). The structure of Goodpasture epitope(s) has been previously mapped into two main binding regions (E-A and E-B) of the alpha 3(IV)NC1 domain using a residue mutation approach on the highly related alpha 1(IV)NC1 domain. Here we combined phage display and surface plasmon resonance technology to more precisely localize the pathogenic binding sites. Peptides mimicking the Goodpasture epitope(s) were used to identify residues involved in autoantibody binding and found involvement of eight residues previously unre…
Structures of collagen IV globular domains: insight into associated pathologies, folding and network assembly
2018
15 páginas, 6 figuras, 1 tabla.
Phosphorylation of the Goodpasture antigen by type A protein kinases.
1995
Collagen IV is the major component of basement membranes. The human alpha 3 chain of collagen IV contains an antigenic domain called the Goodpasture antigen that is the target for the circulating immunopathogenic antibodies present in patients with Goodpasture syndrome. Characteristically, the gene region encoding the Goodpasture antigen generates multiple alternative products that retain the antigen amino-terminal region with a five-residue motif (KRGDS). The serine therein appears to be the major in vitro cAMP-dependent protein kinase phosphorylation site in the isolated antigen and can be phosphorylated in vitro by two protein kinases of approximately 50 and 41 kDa associated with human …
Material-driven fibronectin assembly rescues matrix defects due to mutations in collagen IV in fibroblasts
2020
Basement membranes (BMs) are specialised extracellular matrices that provide structural support to tissues as well as influence cell behaviour and signalling. Mutations in COL4A1/COL4A2, a major BM component, cause a familial form of eye, kidney and cerebrovascular disease, including stroke, while common variants in these genes are a risk factor for intracerebral haemorrhage in the general population. These phenotypes are associated with matrix defects, due to mutant protein incorporation in the BM and/or its absence by endoplasmic reticulum (ER) retention. However, the effects of these mutations on matrix stiffness, the contribution of the matrix to the disease mechanism(s) and its effects…
Novel form of X-linked nonsyndromic hearing loss with cochlear malformation caused by a mutation in the type IV collagen gene COL4A6
2013
Hereditary hearing loss is the most common human sensorineural disorder. Genetic causes are highly heterogeneous, with mutations detected in >40 genes associated with nonsyndromic hearing loss, to date. Whereas autosomal recessive and autosomal dominant inheritance is prevalent, X-linked forms of nonsyndromic hearing impairment are extremely rare. Here, we present a Hungarian three-generation family with X-linked nonsyndromic congenital hearing loss and the underlying genetic defect. Next-generation sequencing and subsequent segregation analysis detected a missense mutation (c.1771G>A, p.Gly591Ser) in the type IV collagen gene COL4A6 in all affected family members. Bioinformatic analysis an…
Genome-Wide Association Study of Diabetic Kidney Disease Highlights Biology Involved in Glomerular Basement Membrane Collagen
2019
BACKGROUND: Although diabetic kidney disease demonstrates both familial clustering and single nucleotide polymorphism heritability, the specific genetic factors influencing risk remain largely unknown.METHODS: To identify genetic variants predisposing to diabetic kidney disease, we performed genome-wide association study (GWAS) analyses. Through collaboration with the Diabetes Nephropathy Collaborative Research Initiative, we assembled a large collection of type 1 diabetes cohorts with harmonized diabetic kidney disease phenotypes. We used a spectrum of ten diabetic kidney disease definitions based on albuminuria and renal function.RESULTS: Our GWAS meta-analysis included association result…